
Proposal: CocoonFs format for SVSM persistence

Nicolai Stange nstange@suse.de

SUSE LLC

July 16, 2025

1 / 6



CocoonFs - Format

▶ Special purpose FS format suitable for TEE settings.

▶ Spec: https://nicst.de/cocoonfs-format.html

▶ All entities encrypted in CBC mode. Fresh IV for each entity encryption op.
Unused storage randomized.

▶ Authenticated by means of a Merkle tree ⇒ a single digest captures the state of
the whole FS.

▶ Algorithm agility: any symcipher + hash(es) from the TCG algorithm registry may
be used.

▶ Features a journal for robustness against service interruptions.

▶ File “names” are simply flat 32 bit inode numbers, organized in a B+-tree.

▶ (Support for online fs image growth would require a small format addition).

2 / 6

https://nicst.de/cocoonfs-format.html


CocoonFs - Format

All entities encrypted in CBC mode. Fresh IV for each encryption op.

▶ ⇒ No seeks, partial file reads or writes.
▶ TCG TPM reference implementation (svsm/libtcgtpm/deps/tpm-20-ref):

▶ TPMCmd/Platform/src/NVMem.c
▶ State size is a compiletime constant: NV_MEMORY_SIZE, 16 kB
▶ State always read + written as a whole.
▶ seek(..., 0, SEEK_SET) + seek(..., 0, SEEK_END)

3 / 6



CocoonFs - Implementation

▶ https://github.com/coconut-svsm/cocoon-tpm/tree/main/storage,
https://crates.io/crates/cocoon-tpm-storage (for docs)

▶ SVSM runtime environment friendly:
▶ No panic on allocation failures, etc.
▶ Uses the cocoon-tpm-crypto crate throughout → bindings to RustCrypto +

BoringSSL, with OpenSSL to come.
▶ Needs only SpinLock + RWLock.
▶ Generic over locking types + the block storage interface.

▶ Transaction based, i.e. everything is all-or-nothing.

▶ API is defined in terms of Rust’s async Future framework. (With no anonymous
Future types being created via async fn.)

4 / 6

https://github.com/coconut-svsm/cocoon-tpm/tree/main/storage
https://crates.io/crates/cocoon-tpm-storage


CocoonFs - Implementation – Quick overview on Rust Futures
▶ Generic, execution environment agnostic framework for defining asynchronous

APIs.
▶ https://doc.rust-lang.org/std/future/trait.Future.html
▶ Each operation/request is represented by some impl Future object. Progress is

driven by

Future::poll(self, ...) →

{
Pending

Ready(result)

▶ Futures may nest: outer poll() polls the inner poll(). The outermost Future
is called a “task”.

▶ Future objects represent the current execution state. May be stored on the heap
(and passed around etc.).

▶ The actual execution environment provides
▶ a “task executor” definition polling the top-level Future however it seems fit,
▶ and IO primitive “leaf Futures” at the other end that play well with the executor.

Anything inbetween can be made completely generic / agnostic of the execution
environment.

5 / 6

https://doc.rust-lang.org/std/future/trait.Future.html


CocoonFs - Implementation

The actual execution environment provides

▶ a “task executor” definition polling the top-level Future however it
seems fit,

▶ and IO primitive “leaf Futures” at the other end that play well with the
executor.

Anything inbetween is completely generic / agnostic of the execution environ-
ment.

▶ Start simple: busy-poll tasks (“FS ops”) to completion, à la
https://crates.io/crates/pollster.

▶ May evolve to anything more complex, e.g. interrupt driven, if needed: redefine
the SVSM’s task executor + the associated block device IO primitives.

6 / 6

https://crates.io/crates/pollster

